MTH 201

Multivariable calculus and differential equations
 Homework 3
 Functions of several variables
 Limit, continuity, and partial derivatives

1. Show that
(a) The set $\left\{(x, y) \in \mathbb{R}^{2}: y=x^{2}\right\}$ is a closed subset of \mathbb{R}^{2}.
(b) The set $\left\{(x, y) \in \mathbb{R}^{2}: x>0\right\}$ is an open subset of \mathbb{R}^{2}.
(c) The set $\left\{(x, y, z) \in \mathbb{R}^{3}: 3 x+2 y+z=6\right\}$ is a closed subset of \mathbb{R}^{3}.
2. Describe the domain for each of the following functions
(a) $f(x, y)=\frac{\sqrt{x+y+1}}{x-1}$
(b) $f(x, y)=x \log \left(y^{2}-x\right)$
(c) $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}-1}}$
(d) $f(x, y, z)=x y \sin z+\log (z-y)$.
3. Describe the level curve for each of the following functions
(a) $f(x, y)=y^{2}-x^{2}$
(b) $f(x, y)=4 x^{2}+y^{2}$.
4. Consider the function defined by $f(x, y)=\frac{2^{99} x^{2} y^{2}}{x^{2}+y^{2}},(x, y) \neq(0,0)$. Use $\epsilon-\delta$ definition of limit to show that

$$
\begin{equation*}
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0 \tag{HW}
\end{equation*}
$$

5. For each of the following functions, find $\lim _{x \rightarrow 0}\left(\lim _{y \rightarrow 0} f(x, y)\right), \lim _{y \rightarrow 0}\left(\lim _{x \rightarrow 0} f(x, y)\right)$, and $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$, if exist
(a) $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
(b) $f(x, y)=\frac{x^{2}+y^{2}}{x^{2}+2 y^{2}}$
(c) $f(x, y)=\frac{x^{2} y^{2}}{x^{4}+y^{2}}$
(d) $f(x, y)=\frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$
(e) $f(x, y)=\frac{x \sin (1 / x)+y}{x+y}$
(f) $f(x, y)=\frac{x^{2} \sin ^{2} y+y^{2} \sin ^{2} x}{x^{2}+y^{2}}$
6. Which of the functions in Question 5 can be made continuous at $(0,0)$ by suitably defining them at $(0,0)$.
7. Show that the function f defined by $f(X)=|X|, X=(x, y, z) \in \mathbb{R}^{3}$, is continuous on \mathbb{R}^{3}.
8. Let $Y \in \mathbb{R}^{3}$ be a point. Show that the function f defined by $f(X)=Y \cdot X, X=$ $(x, y, z) \in \mathbb{R}^{3}$, is continuous on \mathbb{R}^{3}.
9. Consider the function defined by $f(x, y)=0, x y \neq 0$ and $f(x, y)=1, x y=0$. Find partial derivatives if they exist.
